on condition (g-pwp)

نویسندگان

mostafa arabtash

department of mathematics, university of sistan and baluchestan, zahedan, iran. akbar golchin

department of mathematics, university of sistan and baluchestan, zahedan, iran. hossein mohammadzadeh saany

department of mathematics, university of sistan and baluchestan, zahedan, iran.

چکیده

laan in (ph.d thesis, tartu. 1999) introduced the principal weak form of condition $(p)$ as condition $(pwp)$ and gave some characterization of monoids by this condition of their acts. in this paper first we introduce condition (g-pwp), a generalization of condition $(pwp)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. we also give a characterization of monoids, by comparing this property of their acts with some others. finally, we give a characterization of monoids coming from some special classes, by this property of their diagonal acts and extend some results on condition $(pwp)$ to this condition of acts.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Condition (G-PWP)

Laan in (Ph.D Thesis, Tartu. 1999) introduced the principal weak form of Condition $(P)$ as Condition $(PWP)$ and gave some characterization of monoids by this condition of their acts. In this paper first we introduce Condition (G-PWP), a generalization of Condition $(PWP)$ of acts over monoids and then will give a characterization of monoids when all right acts satisfy this condition. We also ...

متن کامل

On a generalization of condition (PWP)

‎There is a flatness property of acts over monoids called Condition $(PWP)$ which‎, ‎so far‎, ‎has received‎ ‎much attention‎. ‎In this paper‎, ‎we introduce Condition GP-$(P)$‎, ‎which is a generalization of Condition $(PWP)$‎. ‎Firstly‎, ‎some  characterizations of monoids by Condition GP-$(P)$ of their‎ ‎(cyclic‎, ‎Rees factor) acts are given‎, ‎and many known results are generalized‎. ‎More...

متن کامل

On the property $U$-($G$-$PWP$) of acts

In this paper first of all we introduce Property $U$-($G$-$PWP$) of acts, which is an extension of Condition $(G$-$PWP)$ and give some general properties. Then we give a characterization of monoids when this property of acts implies some others. Also we show that the strong (faithfulness, $P$-cyclicity) and ($P$-)regularity of acts imply the property $U$-($G$-$PWP$). Finally, we give a necessar...

متن کامل

on a generalization of condition (pwp)

‎there is a flatness property of acts over monoids called condition $(pwp)$ which‎, ‎so far‎, ‎has received‎ ‎much attention‎. ‎in this paper‎, ‎we introduce condition gp-$(p)$‎, ‎which is a generalization of condition $(pwp)$‎. ‎firstly‎, ‎some  characterizations of monoids by condition gp-$(p)$ of their‎ ‎(cyclic‎, ‎rees factor) acts are given‎, ‎and many known results are generalized‎. ‎more...

متن کامل

On the stability of the PWP method

The PWP method was introduced by Dı́az in 2009 as a technique for measuring indirect influences in complex networks. It depends on a matrix D, provided by the user, called the matrix of direct influences, and on a positive real parameter λ which is part of the method itself. We study changes in the method’s predictions as D and λ vary.

متن کامل

ترمودینامیک هندسی گاز جی اون g-on

برخی از خواص ترمودینامیکی گازهای ایده آل کونتومی می تواند به وسیله ی انحنای ریمانی r مربوط به فضای پارامترهای ترمودینامیکی آن گاز محاسبه شود. مولفه های تانسور متریک در این حالت می توانند مشتق های مرتبه ی دوم انرژی داخلی یا آنتروپی سیستم و یا پتانسیل های ترمودینامیکی که تبدیل لژاندر آنتروپی یا انرژی داخلی هستند باشند. به این ترتیب انحنای ترمودینامیکی تابعی از مشتقات دوم و سوم این کمیت ها می باشد...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
categories and general algebraic structures with application

جلد ۵، شماره ۱، صفحات ۵۵-۸۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023